The Oxbridge Medicine Interview

There’s a lot of myth, intrigue and fear surrounding the Interviews at Oxford and Cambridge, and there really needn’t be. Yes, the Oxbridge Interviews are different to “normal” Interviews, but they’re not the frightening, weird environments that the media likes to portray them as.

Table of Contents

The Trick to doing well at Oxbridge interviews

When we all applied, we spent ages trawling the internet, asking our friends, doing anything we could to find the secret to doing well at the Interview, but to no avail. Because unfortunately, there is no trick.

You “just” have to be reasonably intelligent, and be able to think on your feet. You need to know your human biology syllabus inside out, and you need to be able to think out loud and explain your thought process to the interviewers. If you can do all of that, then you’ll probably get in.

The questions that you’ll be asked are designed to be difficult, so don’t panic up when you don’t immediately know the answer. Tell the interviewer what you do know, offer some ideas, talk about ways you’ve worked through a similar problem that might apply here.

Oxbridge interview crash course

Science-Based Interviews

Oxbridge Interviews are more Science-based than Interviews at other Medical Schools.

Oxford and Cambridge tend to give you maths and science problems to talk through. A lot of times, they’ll ask you a question based on your GCSE or A-level Biology syllabus (something really easy) and then they’ll take that topic and extend it into the realms of first and second-year Medicine.

This scares so many people when they think “OMG I haven’t done advanced medical physiology before, what do I do??” but in reality, you don’t need any additional knowledge to do well. What you do need to do is be reasonably intelligent and be able to think through the problem they’re giving you.

Let’s have a quick look at an example of an Oxbridge biology and chemistry science-based Interview question:

Q. Is cancer inevitable?

Oxbridge ask this question with the intention of being purposefully vague, so it is up to you to specify what you think they are asking. It also gives you scope to pick an angle for your answer through which you can best demonstrate your knowledge. You could take a ‘nature vs. nurture’ approach, discussing how there is a genetic component to cancer that predisposes to or protects vs. cancer.

You should make it clear that it is the predisposition to cancer that could be considered inevitable, not cancer itself. Mention any examples you may know of, such as the association of mutation in the BRCA1 gene with breast cancer.

In general, cancer is a disease of ageing and the risk of most cancers increases with age. Thus, one could argue that if most people lived long enough, they would eventually get some type of cancer. Alternatively, you could argue that whilst getting cancer is inevitable at the moment (like getting an infection), medical advances may change this in the future. The important thing is to define the question so that you are able to tackle it rather than giving a one-word response.

Q. What's your favourite element?

This might sound like a bizarre question but it is a good ice-breaking question used to assess your level of interest in Chemistry. It is important to be thoughtful as to what you select and to provide good reasoning – there is no right answer but the interviewer will be testing your reasoning and discussion. Here are two examples of what you could say:

Silicon: Silicon is one of the two elements present in silicon dioxide, the macromolecular structure, which is the main constituent of sand, and forms the basis for many common glasses. Silicon is also vital for electronics – my phone, laptop etc. – which are so important to modern life. Due to its semiconducting electronic structure, it is used in ubiquitous components called transistors.

Nitrogen: Nitrogen is the main component of the air we breathe, although it is so inert that it does not interact with us at all. It is also present in the nitrates that are absorbed by plant roots and is used to form other important molecules.

Please please don’t say you do not have a favourite or use terrible reasoning to provide an answer. Interviewers do not want you to say “I like gold because it is worth a lot of money or oxygen because I need to breath”. 

Interpreting Graphs

Oxbridge absolutely love to ask questions about graphs. The graphs can be anything – population graphs, blood glucose graphs, heart monitors, anything. So it’s very helpful to know what a graph is and how it works.

It’s even more useful to know which measure of average you should use for which kind of graph.

  • If you’ve got a perfectly normal distribution then obviously, the mean, median and modes will be identical.
  • If you’ve got skewed data, the median is probably the better estimate of the average than the mean. That kind of stuff.

You should understand what the slope of a given graph means, and also what the area underneath the graph means. To find out what the slope means, just think about the quantity that y/x represents.

To find out what the area under the graph means, just think about the quantity that y * x represents.

Easy stuff.

Mock Interview Roleplay

Here’s a made-up script that could potentially pass for an Oxbridge Interview, to give you some idea of what goes on in them:

Interviewer

What happens to your body physiology when you exercise?

You

Your heart rate increases! Your muscles need more oxygen and therefore, your heart needs to pump faster to supply that oxygen to the muscles. Your muscles also produce more CO2 which the body needs to get rid of, and so the faster rate of the heart means that CO2 can be transported away from the muscle tissue more rapidly.

Interviewer

Very good. Why do your muscles need more oxygen?

You

Oh, because aerobic respiration requires oxygen to make ATP, which is required for cross-bridge cycling in muscle contraction. I believe oxygen acts as the “terminal electron acceptor” in the electron transport chain?

Interviewer

It does indeed! So we’ve established that we need more oxygen, so let’s start thinking about some more mechanisms. You mentioned that your heart rate increases when you exercise – how do you think the heart can “know” that you’re exercising?

You

I guess the brain could have something to do with this? So when the brain knows that you’re exercising, it could send a message to the heart via the sympathetic nerves to speed it up?

Interviewer

So let’s think about this in chronological order. Even before you start exercising, something happens in the brain…

You

Oh yeah, the brain can anticipate when you’re about to start exercising. So I guess it makes sense that it would send signals to the sympathetic nerves and cause the heart rate to increase even before exercise starts.

Interviewer

Excellent. Aside from heart rate, there’s something else that happens isn’t there?

You

Ah yes, so heart rate increases but so too does force of contraction. So the overall effect is to increase cardiac output?

Interviewer

That’s exactly right. On a related note, do you know what the formula is for determining arterial blood pressure?

You

I can’t say I do I’m afraid. Something to do with force/area maybe? (nervous laugh)

Interviewer

Not to worry. Sort of – the formula I’m talking about is ABP = CO x TPR. Can you think what the abbreviations stand for?

You

Hmm. So ABP must stand for Arterial Blood Pressure and CO presumably stands for Cardiac Output. I know that pressure = force/area, so if the CO is a measure of force, then the TPR term could be inversely proportional to area?

Interviewer

Very astute. TPR in fact stands for Total Peripheral Resistance, and you’re right, the resistance of blood vessels is indeed inversely proportional to their area. Now, when exercising, blood pressure doesn’t change much but cardiac output increases. Forgive the potentially condescending question, but what implications does this have when you consider the formula?

You

Haha, well, we know that ABP is constant and CO increases, so TPR must fall! The total peripheral resistance of the blood vessels must be decreasing.

Interviewer

And how might this happen?

… And so on. You probably get the idea.

If you have an upcoming Oxford or Cambridge Medicine Interview, at 6med, we offer tons of useful support that can help you perform highly on the day. Check out our Oxbridge Interview Crash Course to become an Oxbridge Interview Pro.

Oxbridge interview crash course
interview-bundle-logo